Requirements Toolbox™
Getting Started Guide

<

MATLAB&SIMULINK

R2022a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Requirements Toolbox™ Getting Started Guide
© COPYRIGHT 2017-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

September 2017 Online Only New for Version 1.0 (Release 2017b)

March 2018 Online Only Revised for Version 1.1 (Release 2018a)
September 2018 Online Only Revised for Version 1.2 (Release 2018b)
March 2019 Online Only Revised for Version 1.3 (Release 2019a)
September 2019 Online Only Revised for Version 1.4 (Release 2019b)
March 2020 Online only Revised for Version 1.5 (Release 2020a)
September 2020 Online only Revised for Version 1.6 (Release 2020b)
March 2021 Online only Revised for Version 1.7 (Release 2021a)
September 2021 Online only Revised for Version 1.8 (Release 2021b)

March 2022 Online only Revised for Version 2.0 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Getting Started with Requirements Toolbox

1]

Requirements Toolbox Product Description 1-2

Work with Requirements in the Requirements Editor 1-3
Author Requirements in MATLAB i 1-3
Link Blocks and Requirements, 1-6

Link Blocks and Requirements 1-10
Work with Simulink Annotations 1-8
Link to Test Cases from Requirements 1-13
Requirements Definition for a Cruise Control Model 1-16
Introduction to Requirements Toolbox 1-17
Link Between Requirements and Implementation 1-17
Link Between Requirements and Simulink Test 1-17
Additional Requirements Traceability Links 1-18
Share and Reuse Requirements 1-18

Access Frequently Used Features and Commands from the Requirements

Editor e 1-20
Access the Quick Access Toolbar 1-20
Customize the Quick Access Toolbar 1-20
Create and Run Favorite Commandsccoviun.. 1-21

Verify a MATLAB Algorithm by Using Requirements-Based Tests 1-23

iii

Getting Started with Requirements
Toolbox

* “Requirements Toolbox Product Description” on page 1-2

* “Work with Requirements in the Requirements Editor” on page 1-3

» “Link Blocks and Requirements” on page 1-10

* “Link to Test Cases from Requirements” on page 1-13

* “Requirements Definition for a Cruise Control Model” on page 1-16

» “Introduction to Requirements Toolbox” on page 1-17

* “Access Frequently Used Features and Commands from the Requirements Editor” on page 1-20
» “Verify a MATLAB Algorithm by Using Requirements-Based Tests” on page 1-23

1 Getting Started with Requirements Toolbox

Requirements Toolbox Product Description

1-2

Author, link, and validate requirements for designs and tests

Requirements Toolbox™ lets you author, link, and validate requirements within MATLAB® or
Simulink®. You can create requirements using rich text with custom attributes or import them from
requirements management tools.

You can link requirements to MATLAB code, System Composer™ or Simulink models, and tests. The
toolbox analyzes the traceability to identify gaps in implementation or testing. The design
highlighting and traceability matrix summarize where links exist across multiple artifacts and guide
you to address any gaps. When requirements change, linked artifacts are highlighted, and you can
determine the upstream and downstream artifacts affected using a traceability diagram. Generated
code from Simulink designs includes code comments that document where requirements are
implemented to assist with reviews.

You can formalize requirements and analyze them for consistency, completeness, and correctness
using the Requirements Table. The Requirements Perspective enables you to view and manage
requirements together with design. When used with Simulink, you can create links to blocks with a
simple drag and drop.

Support for industry standards is available through IEC Certification Kit (for ISO 26262 and IEC
61508) and DO Qualification Kit (for DO-178).

https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/products/do-178.html

Work with Requirements in the Requirements Editor

Work with Requirements in the Requirements Editor

Requirements Toolbox enables you to author, organize, and edit requirements in the Requirements
Editor. When working in a Simulink model, you can use the Requirements Perspective to visualize
the links between requirements and the parts of a model. Using an integrated environment simplifies
linking requirements to the parts of your model that implement them.

This integrated environment has other advantages. For more information, see “Introduction to
Requirements Toolbox” on page 1-17.

Author Requirements in MATLAB

In Requirements Toolbox, you organize your requirements in groups called requirement sets. In each
requirement set, you can create additional levels of hierarchy if you need to further describe a
requirement's details.

In this tutorial, you use the Requirements Editor to create a requirement set, organize related
requirements, and add requirements to the set.

Suppose that you are writing requirements for a controller model of an automobile cruise control
system. You develop these requirements using your company’s numbering standard (R1, R2, and so

on).
ID and Description Rationale
R1: The maximum input throttle is 100% The maximum value of the throttle from the

acceleration pedal can be no greater than 100%.

R2: Cruise control has a speed operation range |Cruise control has a minimum and maximum
operating speed.

R2.1: The vehicle speed must be at least 40 km/h |The speed of the vehicle must be at least 40 km/h
for the cruise control system to engage.

R2.2: The vehicle speed cannot be greater than |The maximum operational speed of the cruise
100 km/h control system for the vehicle is 100 km/h.

These requirements capture functionality modeled in a model called crs_controller.

1 Open the project that includes the model and supporting files. At the MATLAB command prompt,
enter:

slreqCCProjectStart
2 Load the requirement set crs_req. At the command prompt, enter:

slreqg.load("crs req")
3 Open the Requirements Editor. In the Apps tab, click Requirements Editor.

The Requirements Editor displays the requirements in the Requirements Browser arranged by

requirement set. The crs_controller model has two requirement sets: crs req_func spec
and crs_req.

1-3

1 Getting Started with Requirements Toolbox

| Requirements Editor — O X

REQUIREMENTS

LI n & save - = c () @
o = i = ‘9 £ A] o E
t -
New Open 520 TPO Add Show Show Search | Traceability Model Testing | Export
Requirement Set Requirement + @& || Reguirements | Links B~ Matrix Dashboard =
FILE REQUIREMENTS LINKS VIEW EDIT ANALYSIS SHARE
(O]
Details
|hi crs_req 2
[%3] crs_req_func_spec To create a new requirement set to store requirements, click New

Requirement Set Lo» Save the reguirement set to assign a name.

To add a requirement to a requirement set, select the requirement set

and click Add Requirement |;:='|LJ'J In the Properties pane, enter details
for the requirement.

4 Add a requirement set in the Requirements Browser. From the Requirements Editor toolbar,
click New Requirement Set.

5 Save the requirement sets to external files. Save your requirement set to a writable location and
name it cruise control reqgset.slregx.

6 Add a requirement to your requirement set by selecting the requirement set and clicking Add
Requirement.

7 In the Details pane, under Properties, enter the details for the requirement. Enter the details
for the requirement:
¢ Custom ID: R1
* Summary: Max input throttle %
* Description: The maximum input throttle is 100%.

If you do not specify a custom ID, the Requirements Editor numbers requirements in order.
Custom IDs enable you to use your company standards for labeling requirements and to set the
numeric order. (Custom IDs cannot contain a # character.) You can also use an ID to help locate a
requirement when searching. Keywords aid in searching for a requirement.

8 Create the requirement R2. Click Add Requirement. Enter the details for the requirement:
* Custom ID: R2
* Summary: Cruise control speed operation range

* Description: Cruise control has a minimum and maximum operating speed.
9 Create child requirements for R2 by selecting R2 and clicking Add Requirement > Add Child
Requirement. Enter the details for the requirement:
* Custom ID: R2.1
* Summary: Minimum vehicle speed

* Description: The speed of the vehicle must be at least 40 km/h for the cruise control system
to engage.

1-4

Work with Requirements in the Requirements Editor

Index ID Summary
ﬁi Crs_req
Iﬁi crs_req_func_spec

hd ﬁl cruise_control_regset®

= 1 R1 Max input throttle 9%
¥ (= 2 R2 Cruise control speed operation range
= 2.1 R2.1 Minimum vehicle speed

Repeat this step to add other child requirements to R2.

You can rearrange the hierarchy by using |5/ Promote Requirement or | Demote Requirement.
Author and Edit Requirements Content by Using Microsoft Word

To author and edit the Description and Rationale fields of your requirements, open Microsoft®
Word from within the Requirements Editor or the Requirements Perspective View.

Note This functionality is available only on Microsoft Windows® platforms.

Using Microsoft Word to edit rich text requirements enables you to:

* Spell-check requirements content.
* Resize images.

* Insert and edit equations.

* Insert and edit tables.

On the Edit field toolbar, in either the Description or Rationale fields, click the %* icon. Save the
changes to your requirements content within Microsoft Word to see them reflected in Requirements
Toolbox.

When you use Microsoft Word to edit requirements content, you cannot edit requirements in the
built-in editor.

Customize Requirements Browser View

You can view or hide columns in the Requirements Editor when you click @Columns > Select
Attributes. Add, remove, and reorder attribute columns in the Column Selector. The view
configuration is saved across sessions. You can export view settings to a MAT-file by using the
slreq.exportViewSettings function and import them by using the
slreq.importViewSettings function. You can reset view configurations by using the
slreq.resetViewSettings function.

Filter Requirements Content
You can search requirements content by clicking Search. You can find specific requirements within

loaded requirement sets based on requirement attributes and descriptions.

1-5

1 Getting Started with Requirements Toolbox

1-6

Specify Filter Text Strings — As you enter text in the Search text box, the Requirements Browser
performs a dynamic search and displays the results. The search operation applies only to attributes
you choose to display in the Requirements Browser.

The text strings you enter must be consistent with the guidelines described in the following sections.
Case Sensitivity — By default, the Requirements Browser ignores case as it filters.

If you want the Requirements Browser to respect case sensitivity, put that text string in quotation
marks.

Specify Attributes and Attribute Values — To restrict the filtering to requirements with a specific
attribute, type the attribute name, followed by a colon. The Requirements Browser displays only the
requirements that have that attribute.

To filter for requirements for which a specific attribute has a specific value, type the attribute name,
followed by a colon (:), then the value. For example, to filter the contents to display only the
requirements where the Summary attribute has a value that includes Aircraft, enter Summary:
Aircraft (alternatively, you could put the whole string in quotation marks to enforce case
sensitivity).

Wildcards and MATLAB Expressions Are Not Supported — The Requirements Browser does not
recognize wildcard characters, such as *. For example, searching fuel* returns no results, even if
requirements contain the text string fuel.

Also, if you specify a MATLAB expression in the Search text box, the Requirements Browser
interprets that string as literal text, not as a MATLAB expression.

Link Blocks and Requirements

You can track requirements implementation by linking requirements to model elements that
implement the requirements. Linking also enables change notification, so that you can review and act
on changes to requirements or models.

In this tutorial, link requirements to a model by using the model requirements perspective. Visual
elements highlight links between requirements and blocks.

1 Open the “Requirements Definition for a Cruise Control Model” on page 1-16 project. At the
MATLAB command prompt, enter:

slreqCCProjectStart
2 Opencrs controller from the models folder. At the MATLAB command prompt, enter:

open_system('models/crs controller"')
3 Inthe model canvas, click the perspectives control in the lower-right corner.

| mnrot.L

[Throttle

142% - -
{ Show Perspectives views |

4 Open the requirements perspective by clicking the Requirements icon.

Work with Requirements in the Requirements Editor

Enter perspective
perspe crs_controller

Ll]

¥

Req“'me”ézmer requirements perspective

The Requirements Browser appears at the bottom of the model canvas. When you select a
requirement, the Property Inspector displays the requirement's properties.
5 Link a requirement to a model element:

1 In the Requirements Browser, search for Enable Switch Detection.

2 Link to the enbl Inport block by clicking and dragging the requirement to the block. An
annotation template appears.

3 Place the requirement annotation by clicking on the canvas. Create a link without an
annotation by clicking outside the canvas.

enbl

6 The block displays a link badge. To display information about the requirement, click the badge
and select Show.

 E—
|=| #9 Enable Switch Detection

Show
enbl Aij
cncl

Clicking Show displays the requirement ID, requirement summary, and link type. For information
on link types, see “Requirement Links”.

1-7

1 Getting Started with Requirements Toolbox

1-8

#9: Enable Switch Detection 25

cncl

* To see the requirement description, double-click the annotation.

+ To edit the requirement, right-click the annotation and select Select in Requirements
Browser. Edit the requirement properties in the Property Inspector.
7 Exit the requirements perspective. Click the perspectives control and click the requirements
icon.

Exit perspective
Persp crs_controller

]

Exit requirements perspective i
-

Ll]

LA

Requirements Interface

Work with Simulink Annotations

Convert Simulink Annotations to Requirements

You can convert the annotations in your Simulink models to requirements by using the context menu
in the Requirements Perspective View and by using the API. See slreq.convertAnnotation for
more information on converting annotations to requirements by using the API.

To convert annotations to requirements by using the context menu in the Requirements Perspective
View:

1 Open the Simulink model and enter the Requirements Perspective View.

2 Select a requirement set from the Requirements Browser. This is the destination requirement set
for the new requirement.

3 Right click the annotation you want to convert to a requirement and click Convert to
Requirement.

4 The annotation is converted to a requirement and is linked to the system or subsystem at which
the annotation was present.

Link Requirements to Simulink Annotations

Use the Requirements Perspective View to link requirements to text and area annotations on the
Simulink Editor. To create a link, select a requirement and drag it onto the annotation. If you link
requirements to an area annotation, a badge appears on the annotation to show that the link was
created. You see badges only in the Requirements Perspective View. To see more information about
the requirement, click the badge and select Show.

Work with Requirements in the Requirements Editor

See Also
Requirements Editor

More About

. “Introduction to Requirements Toolbox” on page 1-17
. “Requirement Links”

. “Define Requirements Hierarchy”

1-9

1 Getting Started with Requirements Toolbox

Link Blocks and Requirements

You can track requirements implementation by linking requirements to model elements that
implement the requirements. Linking also enables change notification, so that you can review and act
on changes to requirements or models.

In this tutorial, link requirements to a model by using the model requirements perspective. Visual
elements highlight links between requirements and blocks.

1 Open the “Requirements Definition for a Cruise Control Model” on page 1-16 project. At the
MATLAB command prompt, enter:

slreqCCProjectStart
2 Opencrs controller from the models folder. At the MATLAB command prompt, enter:

open_system('models/crs_controller")
3 Inthe model canvas, click the perspectives control in the lower-right corner.

| mnrot.L

[Throttle

142% i—%

T Show Perspectives views

4 Open the requirements perspective by clicking the Requirements icon.

Enter perspective
perspe crs_controller

Ll]

L

Requ“’erneng:zl]til' 'iC|lIiI'E"I'I'i'I'|IS PErspecive

The Requirements Browser appears at the bottom of the model canvas. When you select a
requirement, the Property Inspector displays the requirement's properties.
5 Link a requirement to a model element:

1 In the Requirements Browser, search for Enable Switch Detection.

2 Link to the enbl Inport block by clicking and dragging the requirement to the block. An
annotation template appears.

3 Place the requirement annotation by clicking on the canvas. Create a link without an
annotation by clicking outside the canvas.

1-10

Link Blocks and Requirements

enbl

6 The block displays a link badge. To display information about the requirement, click the badge
and select Show.

[=1
|=| #9 Enable Switch Detection Shiw

enbl
cncl

Clicking Show displays the requirement ID, requirement summary, and link type. For information
on link types, see “Requirement Links”.

‘ﬁ

* To see the requirement description, double-click the annotation.

» To edit the requirement, right-click the annotation and select Select in Requirements
Browser. Edit the requirement properties in the Property Inspector.
7 Exit the requirements perspective. Click the perspectives control and click the requirements
icon.

1-11

1 Getting Started with Requirements Toolbox

1-12

Exit perspective
persp crs_controller

B

Exit requirements perspective i
'l v |

f‘[|‘

L=

Requirements Interface

Work with Simulink Annotations

Convert Simulink Annotations to Requirements

You can convert the annotations in your Simulink models to requirements by using the context menu
in the Requirements Perspective View and by using the API. See slreq.convertAnnotation for
more information on converting annotations to requirements by using the API.

To convert annotations to requirements by using the context menu in the Requirements Perspective

View:

1 Open the Simulink model and enter the Requirements Perspective View.

2 Select a requirement set from the Requirements Browser. This is the destination requirement set
for the new requirement.

3 Right click the annotation you want to convert to a requirement and click Convert to
Requirement.

4 The annotation is converted to a requirement and is linked to the system or subsystem at which

the annotation was present.

Link Requirements to Simulink Annotations

Use the Requirements Perspective View to link requirements to text and area annotations on the
Simulink Editor. To create a link, select a requirement and drag it onto the annotation. If you link
requirements to an area annotation, a badge appears on the annotation to show that the link was
created. You see badges only in the Requirements Perspective View. To see more information about
the requirement, click the badge and select Show.

Link to Test Cases from Requirements

Link to Test Cases from Requirements

If you have Simulink Test™ and Requirements Toolbox, you can link your requirements to test cases
in the Test Manager. Linking to tests lets you see how requirements are confirmed with tests.

These links also help you to see your progress toward verifying the implementation of each
requirement. Requirements Toolbox can display verification status. Verification status helps you to
see the requirements that are verified, the requirements that are missing tests, and whether tests
associated with your requirements passed or failed.

In this tutorial, you link requirements to test cases associated with a controller model of an
automobile cruise control system, managed in a project. After you run the tests, you include the
results in the Requirements Editor.

1

Open the project. At the MATLAB command prompt, enter:

slreqCCProjectStart
Open the controller model. At the command prompt, enter:

open_system("models/crs controller")

Open the Test Manager. In the Apps tab, click Simulink Test. In the Test tab, click Simulink
Test Manager.

In the Simulink Test Test Manager, from the tests folder, open the

DriverSwRequest Tests.mldatx test file.

In the Test Browser pane, expand the test case hierarchy. The test file contains the test cases for
several of the requirements in the crs controller model. Most of these tests cases already
link to requirements.

Link the Increment button hold test to a requirement. Select that test case.

Open the Requirements Editor. Navigate back to the crs_controller Simulink model. In the
Apps tab, under Model Verification, Validation, and Test, click Requirements Editor.

Click Show Requirements. Display the requirements hierarchy for crs req func_ spec.
Right-click the requirement with the ID 1.3 (Long Switch recognition) and select Link
from Selected Test Case.

The link to the test case appears in the Details pane, under Links.

1-13

1 Getting Started with Requirements Toolbox

|5 Requirements Editor — O

REQUIREMENTS

(! n % Save ‘ Delete é = @ n% Cn| pe
Et] 'j L E-l- = o - Delste 1= “9 g (“L | B (3)
rt EE i 13 - B
New Open = e Add £ ens i ks Add Show Show Search Traceability = Export Help
Requirement Set Close Requirement ~ |25| Demote Requirement Link + Requirements Links ﬂ - Matrix - -
FILE REQUIREMENTS LINKS VIEW EDIT AMALYSIS SHARE | DOCUMENTATION

' Requirement: #4

Details
hd ﬁ, crs_req_func_spec* }» Properties
v E1 #1 Driver Switch Request Handling
¥ Links
B 11 #2 Switch precedence
B 12 #4 Long Switch recognition El ¢ Implemented by:
B 13 #7 | Cancel Switch Detection I} Enumerated Constants
E 14 #B Set Switch Detection El 4= Verified by:
E 15 #9 Enable Switch Detection =] Increment button hold
El 16 #10 Resume Switch Detection
B 17 #11 Increment Switch Detection
El 18 #15 Decrement Switch Detection
E 2 #19 Cruise Control Mode ~ Comments
537 et ©
E 3 #37 Calculate Target Speed and Throttle Value P —
E 4 #44 System Interface
No comments
&5 #71 | Justifications

]

1-14

10

11

View verification information for other requirements 1.4, 1.6, 1.8, and 1.9 by selecting each
requirement. The links are displayed in the Details pane under Links under Verified by.

To run linked tests, in the Test Manager, select the top node in the test hierarchy in the Test
Browser pane, then click Run.

The Results and Artifacts pane in the Test Manager shows that 7 tests passed and 1 test failed.

Expand the results. The Cancel button test failed and the other tests passed.

Resulfs and Ariifacts

| T
~ Results: 2017-Jul-07 14:51:58 e 10
+ = DriverSwRequest_Tests o109
+ 21 Unit test for DriverSwRequest 7@ 1@

+ [£| Enable button

» [5| Cancel button

+ [£] Set button

» [=] Resume button

¢ [£] Increment button short
» [5] Increment button hold
¢ [£| Decrement button shart
» [=] Decrement button hold

o OO0 00 0 0 O

In the Requirements Editor, select EColumns > Verification Status. Resize the
requirements browser window to see the Verified column.

This view shows you the progress toward verification. Some requirements do not yet have tests.
Some requirements are fully verified. The width of the verified display shows the proportion of

Link to Test Cases from Requirements

subrequirements that have links to verification. The color of the display indicates the proportion
of tests that have passed, failed, or not run.

Here, the Cancel Switch Detection verification status shows that the test failed. Some
requirements are partially verified because the subrequirements are not yet verified, such as
requirement 1.8 in the figure. Hover over the verification status bar for details about the
subrequirements. Other requirements are unverified because they are not linked to a test case.

M Requirements Editor

REQUIREMENTS

- [m]

UL:'P 3 B save ~ E_é Delete) = “9 @ O\ & iié Iﬁ @
New Open & Szecd Add 1| el e =i Add ¢ Show Show Search Traceability = Export Help
Requirement Set Close Requirement « 25| Demote Requirement Link + Requirements Links ﬁ = Matrix ~ -
FILE REQUIREMENTS LINKS VIEW EDIT AMALYSIS SHARE | DOCUMENTATION ry
? Reqguirement: #4
€ T ifie T Details
hd |h| ars_req_func_... -] » Properties
vE! #1 Driver Switch Request Handling]) Functional
~ Links
E 11 #2 | Switch precedence] Functicnal
~ B 12 #4 Long Switch recognition _) Functi al E 4= Implemented by:
[El 121 | #5 Waiting state for Long Increment switch... [%Funmcnal Em g Enumerated Constant5s
[El 122 #6 | Waiting state for Long Decrement switc... [] Functional E <= Verified by:
E 123 #3 Avoid repeating commands [] Functicnal = Increment button hold 0
El 13 #7 Cancel Switch Detection _ Functional
E 14 #B Set Switch Detection [Functicnal
El 15 #9 Enable Switch Detection _ Functional ! 4
B 18 #10 Resume Switch Detection [Functicnal * Comments
> B 17 #11 Increment Switch Detection _: Functional Add Comment
> B 18 #15 Decrement Switch Detection _: Functicnal
> B 2 #19 Cruise Control Mode [] Functional o comments
> B 3 #37 Calculate Target Speed and Throttle Value [] Functional
> B 4 #44 System Interface [] Container
> @5 #71 | Justifications
See Also

More About

. “Requirement Links”
. “Link Test Cases to Requirements Documents”
. “Work with Requirements in the Requirements Editor” on page 1-3

1-15

1 Getting Started with Requirements Toolbox

Requirements Definition for a Cruise Control Model

This is a comprehensive example for Requirements-driven MBD with multiple related design artifacts
managed in a project. Use the following code to open this project: slreqCCProjectStart()

This will place the necessary files in a working directory, which will allow you to modify links between
artifacts, run tests, generate reports, play around with implementation and verification status
updates.

bﬁ crs_controller - Simulink prerelease use

SIMULATION MODELING FORMAT REQUIREMENTS x
_ i]
55 @ Lam AL Import | 2% Highlight Links @) <
Save All Requirements New 3 Open @ Layout v Check Share
- Editor Requirement Set Consistency =
FILE EDIT REQUIREMENT SET VISUALIZE ANALYZ| SHARE a
crs_controller [| Property Inspector ¥ x
® crs_controller » - Requirement: #19
Details
(T)—>fem = ¥ Properties
Ed
enbl Type: Functional 4
= encl |#1: Driver Switch Request Handling% Index 2
cnc =
7 Custom ID: |3 |
set
set reqDry — ._.@ Summary: |Cruise Control Mode |
0O @—D resume reqDrv Description Rationale
resume [#19: Cruise Control Mode & —
oy sl Z @ o2 Jn % 7 u M [= =~
inc / [MPLEMENTS The Cruise Control Mode module determines the
(6)—>cec = / operation mode of the cruise control system.
dec - reqDrv [#37: Calculate Target Speed and T.1
DriverSwRequest The operation mode is determined by two types of
7 brakeP statu Sources:
Q g [k 1. Output of the Driver Switch Request model
brakeP 2. Environmental conditions
(11) » vehSp
vehSp This module also controls the status indicator usad in
@ o the instrument panel.
mode | mode
key targetSp —b@
9) * gear targetSp
gear - vehSp
CruiseControlMode
throtCC
(10) ¥ throtDrv throteC
|E_E| throtDrv
. TargetSpeedThrottle
» ||&
Requirements - crs_controller L4
- Keywords:
view: |Requrements ~ | [[5 (3 S
» Revision information:
Ll
v B o,)) [
v E1 Driver Switch Request Handling —[) El 4= Implemented by:
E 1.1 Switch precedence [][] CruiseControlMode
E 13 Long Switch recognition O)()
»
8 15t swten bt 1) | > Comments
Ready 110% FixedStepDiscrete

1-16

Introduction to Requirements Toolbox

Introduction to Requirements Toolbox

In this section...

“Link Between Requirements and Implementation” on page 1-17
“Link Between Requirements and Simulink Test” on page 1-17
“Additional Requirements Traceability Links” on page 1-18

“Share and Reuse Requirements” on page 1-18

Requirements Toolbox integrates requirements authoring and management with your modeling
environment. You can author requirements in Simulink in the Requirements Editor, where you can
organize and manage them. You can also import them from Microsoft Word or Excel® on some
platforms. For details, see “Import Requirements from Third-Party Applications”.

Link Between Requirements and Implementation

You can link from requirements to the Simulink blocks or Stateflow® objects that implement them.
The connection is bidirectional, meaning that you can locate a requirement from a model element and
a model element from a requirement.

You can:

* View implementation progress, including identifying missing implementations.

* React to requirement changes by updating model elements as requirements change, and clarifying
requirements as your model evolves. You can find changed requirements by using a single
command.

* Confirm that model changes conform to the associated requirement.

[#1: Driver Switch Request Handling™ | v {f& e req. func. spec _:]

P '7 Driver Switch Reguest Handling _:]

Switch precedence

v E1
11

m

1.2

[
B

Long Switch recognition

1.3

]

[

14

-]

Set Switch Detection

m

4% 4% 4 4% 4% 4

15 Enable Switch Detection

m

For more information, see “Requirement Links”.

Link Between Requirements and Simulink Test

If you have Simulink Test, you can link between requirements and tests that verify them. You can
associate a requirement or set of requirements with tests that you create in Test Manager. When you
run a test in Test Manager that you linked to a requirement, you can see the pass/fail results in the
Requirements Editor.

Because you can track test results in Requirements Toolbox, you can see the progress toward
verification. The verification status also helps you to identify missing information and clusters of
requirements associated with failing tests. You can use this information to understand the impact and
complexity of those requirements.

1-17

1 Getting Started with Requirements Toolbox

M Requirements Editor — [m}
REQUIREMENTS
g, 0 B s @ ame [H FE QL & ©
New Open == ImPort Add (] Promote Requirement | 1y Clear Issue show shon 7 georen Traceability Export Help
Reguirement Set Close Requirement ~ 22| Demote Requirement | Link ~ Requirements Links &~ Matrix = -
FILE REQUIREMENTS LINKS VIEW EDIT AMALYSIS SHARE | DOCUMENTATION
' Requirement: #4
f T Details
hd h, crs_req_func_... -] » Properties
v E1 #1 Driver Switch Request Handling —] Functional
~ Links
E 11 #2 Switch precedence | Functicnal
Bl 121 #5 Waiting state for Long Increment switch... [—] Functional L} Enumerated Constant5s
B 122 #6 Waiting state for Long Decrement switc [] Functional El 4= Verified by:
B 123 #3 Avoid repeating commands [] Functional = Increment button hold 0
B 13 #7 Cancel Switch Detection O ctional
E 14 #8 Set Switch Detection (Functional
ERE #9 Enable Switch Detection O Functional
E 16 #10 Resume Switch Detection [Functicnal * Comments
B 17 #11 Increment Switch Detection O) Functomal T
E 18 #15 Decrement Switch Detection _: Functional
B 2 #19 Cruise Control Mode [] Functional o comments
E 3 #37 Calculate Target Speed and Throttle Value [] Functional
E 4 #44 System Interface []Cuntainer
&5 #71 Justifications

For more information, see “Link Test Cases to Requirements Documents”.

Additional Requirements Traceability Links

With Requirements Toolbox, you can create several other types of traceability links and establish
many relationships within your model and to external documents. You can create these types of
traceability links:

* Implements, in which a design element implements a requirement

» Verifies, in which a test case verifies a requirement

* Related to, in which you establish a trace relationship between a model element and a
requirement

* Derives, in which a requirement is derived from another requirement
* Refines, in which one requirement refines another requirement

You can link between other types of documents, for example, HTML or DOORS® items, and
requirements and to additional model elements such as dictionary objects.

For more information, see “Requirement Links”.

Share and Reuse Requirements
You save requirements files separately from your model files. You can then reference requirement

files from multiple models, and each model can reference multiple requirement files. Saving
requirements in separate files lets you modularize common requirements across models while also

1-18

Introduction to Requirements Toolbox

managing requirements that are model-specific. This approach minimizes potential for copy-and-
paste errors and keeps the requirements in sync across the models that share them.

You can compare requirements files (. slreqgx files) by using the MATLAB file comparison tool. This
tool helps you to identify differences in similar requirement sets. For more information, see “Compare
Requirement Sets”.

You can also include requirements files in Projects. When you open a project, load requirement sets
into the Requirements Editor from the project explorer. For more information, see “Requirements-
Based Development in Projects”.

Another way to share information about requirements is to generate a report that includes the
requirements definition, links, implementation details, verification status, and so on. For more
information, see “Generate Requirements Reports Using Simulink”.

See Also

More About

. “Work with Requirements in the Requirements Editor” on page 1-3
. “Import Requirements from Third-Party Applications”
. “Link to Test Cases from Requirements” on page 1-13

1-19

1 Getting Started with Requirements Toolbox

Access Frequently Used Features and Commands from the
Requirements Editor

1-20

You can access your most frequently used features and commands in the Requirements Editor by
using the quick access toolbar. You can customize the toolbar by adding actions from the toolstrip,
reorganizing the toolbar buttons, and showing the button labels. You can also add commands that run
MATLAB language statements to the quick access toolbar.

The quick access toolbar preferences persist across MATLAB sessions. The toolbar is always visible,
even if the toolstrip is minimized.

Access the Quick Access Toolbar
Open the Requirements Editor. For more information, see Requirements Editor.

You can also add the Requirements Editor to the MATLAB or Simulink quick access toolbars from
the Apps tab by right-clicking the Requirements Editor app and selecting Add to Quick Access
Toolbar. For more information, see “Customize MATLAB Toolbars” and “Access Frequently Used
Features and Commands in Simulink” (Simulink).

The quick access toolbar is in at the top right corner of the Requirements Editor.
% - @

The default buttons allow you to copy, cut, and paste requirements, referenced requirements, and

¥
justifications. You can create and run favorite commands by clicking the Favorites icon —#t to open
the Favorite Commands menu. You can also access the Requirements Toolbox documentation by

(o
clicking the help button ‘--_-4‘JI

Customize the Quick Access Toolbar

You can customize the quick access toolbar by adding and removing actions, rearranging the buttons,
and showing the button labels. You can also restore the default toolbar buttons.

Add and Remove Actions

You can add actions to the quick access toolbar by right-clicking a toolstrip button and selecting Add
to Quick Access Toolbar. You can also add favorite commands to the toolbar by using the Favorite
Commands menu.

You can remove non-default actions, including favorite commands, by right-clicking the button in the
toolbar and selecting Remove from Quick Access Toolbar.

Rearrange Buttons
You can rearrange the quick access toolbar buttons by clicking and dragging the buttons.

A partition separates the default and non-default toolbar buttons. You cannot move buttons across the
partition.

Access Frequently Used Features and Commands from the Requirements Editor

Show and Hide Button Labels

Each quick access toolbar button has a label that describes the action it performs. You can show the
label for a button by right-clicking the toolbar button and selecting Show Label.

You can hide the label by right-clicking the button and selecting Hide Label.
Restore the Default Toolbar

The default quick access toolbar contains actions to copy, cut, paste, open the Favorite Commands
menu, and access the documentation.

You can restore the toolbar to its default state by right-clicking in the toolbar and selecting Restore
Defaults.

Restoring the default toolbar:

* Removes non-default action buttons, including favorite commands
* Arranges the default buttons to their default order
* Hides button labels

Create and Run Favorite Commands

You can create favorite commands to run a group of MATLAB language statements by using the
Favorite Commands menu.

1 . , N
In the quick access toolbar, click the Favorites icon —%t.

2 In the Favorite Commands menu, click New Favorite.
3 In the Favorite Command Editor, enter a name for the command in the Label field.

Favorite Command Editor *
Label Will use Code if left empty

Type Script -
Code 1 # Command summary goes here.

Category | Favorite Commands =
Icon (%, Favorite Command Icon -

[] Add to quick access toolbar
Show label on quick access toolbar
Cancel Help

1-21

1 Getting Started with Requirements Toolbox

1-22

8

9

Select the command type from the Type list. Scripts execute in the base workspace, while
functions execute in a limited scope. For more information, see “Base and Function Workspaces”.
Enter your MATLAB code in the Code field.

Select the category to place the command in from the Category list. The Favorite Commands
category is selected by default.

Choose an icon for the command by selecting from the Icon list. You can use a custom icon by
setting Icon to Specify custom icon.

To add the command directly to the quick access toolbar, select Add to quick access toolbar.
To show the label for the toolbar button, select Show label on quick access toolbar.

Click OK.

»
You can run the command by clicking the Favorites icon —#f and clicking the command or by clicking
the icon in the quick access toolbar.

Add a Favorite Command Category

You can create categories to organize your favorite commands into groups. To create a category, in
the Favorite Command Editor, click New Category. Enter a name for the category in the Label field,
then click OK.

Edit, Delete, and Organize Favorite Commands

You can edit, delete, and organize existing favorite commands and categories.

To edit a favorite command or category, right-click the command or category and select Edit
Favorite or Edit Category. Make changes in the editor, then click OK.

To delete a favorite command or category, right-click the command or category and select Delete
Favorite or Delete Category. Deleting a category deletes all favorite commands in the category.

See Also

More About

“Author Requirements in MATLAB”
“Customize MATLAB Toolbars”
“Access Frequently Used Features and Commands in Simulink” (Simulink)

Verify a MATLAB Algorithm by Using Requirements-Based Tests

Verify a MATLAB Algorithm by Using Requirements-Based Tests

This example shows how to verify a MATLAB® algorithm by creating verification links from MATLAB
code lines in functions and tests to requirements. This example uses a project that contains an
algorithm to calculate the shortest path between two nodes on a graph.

Open the project.
slregShortestPathProjectStart

Examine the Project Artifacts
The project contains:

* Requirement sets for functional and test requirements, located in the requirements folder
* A MATLAB algorithm, located in the src folder
» MATLAB unit tests, located in the tests folder

* Links from MATLAB code lines to requirements, stored .slmx files located in the src and tests
folders

» Scripts to automate project analysis, located in the scripts folder
Open the Functional Requirement Set

The shortest path func_ reqs requirement set captures the functional behavior that the
shortest path function requires. The requirements describe the nominal behavior and the
expected behavior for invalid conditions, such as when the inputs to the function are not valid. Open
the requirement set in the Requirements Editor.

funcReqs = slreq.open("shortest path func reqs");

Use the Shortest Path Function

The shortest path function tests the validity of the inputs to the function and then uses the
Djikstra algorithm to calculate the number of edges in the shortest path between two nodes on a
graph. The inputs to the function are an adjacency matrix that represents a graph, the starting node,
and the ending node. For example, consider this adjacency matrix that represents a graph with six
nodes.

010010;

A=
1
0
0
1
0

[cNoNoN N o]
[cNoN S NoN
PFRPORFRO
ool NoNo]
COHOO

’
’
’
’

Create a graph from the matrix and plot it.

G = graph(A);
plot(G,EdgeLabel=G.Edges.Weight)

1-23

1 Getting Started with Requirements Toolbox

1-24

G

&3

.2
®5

L |

Calculate the number of edges in the shortest path between nodes 1 and 6.
pathLength = shortest path(A,1,6)

pathLength 3

Open the Test Requirement Set

The shortest path tests reqs requirement set contains test requirements that describe the
functional behavior that must be tested by a test case. The test requirements are derived from the
functional requirements. There are test requirements for the nominal behavior and for the invalid
conditions. Open the requirement set in the Requirements Editor.

testReqs = slreq.open("shortest path tests reqs");

The class-based MATLAB unit tests in graph_unit tests implement the test cases described in
shortest path tests reqs. The class contains test methods based on the test requirements from
shortest path tests reqs. The class also contains the verify path length method, which
the test cases use as a qualification method to verify that the expected and actual results are equal.
The class also contains static methods that create adjacency matrices for the test cases.

View the Verification Status

To view the verification status, in the Requirements Editor toolstrip, in the View section, click B
Columns and select Verification Status. Three of the functional requirements and one test
requirement are missing verification links. The verification status is yellow for each requirement,
which indicates that the linked tests have not run.

Verify a MATLAB Algorithm by Using Requirements-Based Tests

M Requirements Editor

REQUIREMENTS

Qg e - e
New Open 55 IMPort Add Add

Requirement Set Requirement =

Link ~ & Reguirements | Li Matrix Diagram
FILE REQUIREMENTS LINKS

Q & W &

Search | Traceability Traceability Model Testing | Export
Dashboard =

WIEW EDIT AMALYSIS SHARE

»l

® Requirement: #8

hd |h| shortest_path_func_regs

* Properties
] Type: Container g
Index: 2.2
] Custom ID: |:£ |

Summary: | Exceptional conditions |

Description Rationale

% o 5 7 u M

[l
Ml
Tl
b4

The following exceptional cases should be processed in the

order specified where negative value error codes are returned.

error and always returns a non-negative number to indicate a
path or a negative number to indicate some abnormal condition.

)
)
)
J| | The function should be designed so that it never throws an
)
)
)

Keywords:

} Revision information:

} Custom Attributes

¥ Links

No links

(
B 1 #1 Overview
v E 2 #2 Functional behavior (
> B 21 #12 Nominal behavior
V B 22 #B8 Exceptional conditions
B 221 #9 Returns -9 for invalid adjacency matr...
B 222 #10 | Returns -19if the start node is encod... [
B 223 #11 Returns -29 if end node is encoded i... [
B 224 #6 | Returns -99 if startldx or endldx > n... [
B 225 #7 | Returns -199 if startldx or endldx ar... [
E 228 #5 Returns 0 if startldx == endldx [
B 227 #4 | Returns -1 if no path from startldx to... [
A |h| shortest_path_tests_regs [
B 1 #1 Owverview
v E 2 #2 Test Cases (
v B 21 #22 Nominal Mode Tests (
E 211 #8 Test for path length 1 (
B 212 #6 Test for a simple graph with no cycles [
B 213 #7 Test for a graph that is a tree [
B 214 #5 Test for a graph that contains cycles [
E 215 #3 Test when shortest path is not unigue [
B 218 #4 Test for path length N where N is nu... [
B 217 #10 Test a graph which has no edges [
E 218 #12 | Test a graph starting from a node wit... [
B 2109 #13 | Test a graph ending on a node with ... [
> B 22 #15 | Tests for invalid conditions [

» Comments

Run the tests and update the verification status for the requirement sets by using the runTests

method.
statusl = runTests(funcReqs);

Running graph unit tests

status2 = runTests(testReqs);

Running graph unit tests

1-25

1 Getting Started with Requirements Toolbox

The verification status is green to indicate that the linked tests passed. However, some of the
requirements do not have links to tests.

Identify Traceability Gaps in the Project

The functional and test requirements are linked to code lines in the shortest path and
graph unit tests files, but the traceability is not complete. Use a traceability matrix to identify
requirements that are not linked to tests and to create links to make the requirements fully traceable.

Find the Missing Links with a Traceability Matrix

Create a traceability matrix for both requirement sets with the requirements on the top and the unit
tests on the left. For more information about traceability matrices, see “Track Requirement Links
with a Traceability Matrix”

mtxOpts = slreq.getTraceabilityMatrixOptions;
mtxOpts.topArtifacts = {'shortest path func reqs.slregx', 'shortest path tests reqs.slreqgx'};

mtxOpts.leftArtifacts = {'graph unit tests'};
slreq.generateTraceabilityMatrix(mtxOpts)

In the Filter Panel, in the Top section, filter the matrix to show only the functional requirements not
linked to tests by clicking:

* Top > Link > Missing Links
* Top > Type > Functional

In the Left section, show only the test functions in the graph_unit tests file by clicking:

* Left > Type > Function
* Left > Attributes > Test

Click Highlight Missing Links in the toolstrip.

1-26

Verify a MATLAB Algorithm by Using Requirements-Based Tests

= Returns -9 for imvalid
El Returns -19 if the sta
=l Returns -29 if end nor
El Testfor a araph that i

=] El £ xeaphiional conations
= El vominal Mode Tests

= E Funcional behavior

=&l shortest path fune regs
B shortest path tests regs
o E test cases

El] graph_unit_testzm
El ¥ Class: graph_unit_fests
= %l Methods{Test)
B check_invalid_start_1
Bl check_invalid_start_2
= check_invalid_end_1
= check_invalid_esnd_2
*l check_longest_path
*l check_unity_path
= check_non_unigque
'l'il check_no_path

*l check_edgeless_graph

The Traceability Matrix window shows the three functional requirements and one test requirement
that are missing verification links.

Create Verification Links for Requirements

The test requirement 2.1.3, Test for a graph that is a tree, is not linked to a test. A tree is
a graph in which any two nodes are only connected by one path.

The test case check invalid start 1 tests a tree graph by using the graph straight seq
static method to create the adjacency matrix. Use the graph straight seq method to view the
tree graph.

graph_unit tests.graph straight seq;
graph(A);
lot(G,EdgelLabel=G.Edges.Weight)

A
G
p

1-27

1 Getting Started with Requirements Toolbox

®;

*2

* 3

* g

Create a link from the Test for a graph that is a tree requirement to the
check invalid start 1 test case by using the traceability matrix you previously generated.

slreg.generateTraceabilityMatrix(mtxOpts)

Click the cell that corresponds to the requirement and the test and select Create. In the Create Link
dialog box, click Create.

1-28

Verify a MATLAB Algorithm by Using Requirements-Based Tests

58 =
2: 21 % E B
- a = o = w0 m =
o = = = < =3 = =
o 5] _f; E = = e ~ =
. = 2 =] =2} v ot} =
[~ - o o A o W o o
RN IRIN IR I I I
Si G =i 31 31 31 & @ § i =
& [~ a 7] 7]] o 2 = =
Srei i ere: 58 Fq 2
T g W i I} | T 5 = |
& [y i 5 o i
i | i} i | |
Ao Ao
i} |

B check_invalid_start_1 |:|

Bl check_invalid_start 2

BH Left | #] check invalid start_1

= check_invalid_end_1 B Top E Test for a graph that is a tree
i Link | None (Creats

= check_invalid_end_2 { é:j)

Click to add a new link |

= check_longest_path

Update the verification status in the Requirements Editor by running the tests linked to the test
requirements. The check invalid start 1 test verifies the Test for a graph that is a
tree requirement.

status3 = runTests(testReqs);

Running graph unit tests

Additionally, three functional requirements do not have links to tests:

* Requirement 2.2.1: Returns -9 for invalid adjacency matrices
* Requirement 2.2.2: Returns -19 if the start node is encoded incorrectly
* Requirement 2.2.3: Returns -29 if end node is encoded incorrectly

There is a traceability gap for these requirements. You cannot fill this gap by creating links to tests
because there are no tests that verify these requirements.

Fix Coverage and Traceability Gaps by Authoring Tests

The three functional requirements that do not have links to tests do have links to lines of code in the
shortest path function. Run the tests with coverage to determine if those lines of code in the
shortest path function are covered by tests.

Run Tests with Coverage

Use the RunTestsWithCoverage script to run the tests with function and statement coverage and
view the coverage in a report. For more information, see “Generate Code Coverage Report in HTML
Format”.

1-29

1 Getting Started with Requirements Toolbox

RunTestsWithCoverage
Running graph unit tests

Done graph unit tests

Code coverage report has been saved to:
C:\Users\jdoe\MATLAB\Projects\examples\ShortestPath\coverageReport\index.html

Open the coverage report. The error code statements on lines 20, 25, and 30 are not covered by tests.

Hit Co... | Line Nurm C:\Users\jdoe'\MATLAB \Projects\examples\ShortestPath\src\shortest_path.m

12 1 function pathlength = shortest path(adjMatrix, startIdx, endIdx) ¥s#codsgen
2 % SHORTEST FATH - Finds length of shorteat path between nodes in a graph
3 %
4 % QUT = SHORTEST PATH (ADJMTX, STRRTIDX, ENDIDX) Takes a graph represented by
5 % its with two node STARTIDX, ENDIDX az
B 3 inputs and returns 2 integer containing the length of the shortest path
7 % from STARTIDX to ENDIDX in the graph.
=3
g % Copyright 2021 The MathWorks, Inc.
10
11
12 %% Validy testing on the inputs
13 % This code should newver throw an error and instead should return
14 %2 error codes for invlid inputs.

14 15 ErrorCode = O;

14 18 pathLength = -1;
17
18 % Check the walidity of the adjacency matrix

14 18 if (~isAdiMatrixvalid(adjMatrix))

0 20 ErrorCode = -9;
21 end
22
23 % Check the wvalidity of the startldx

14 24 if ~isNodeValid(startIdx)

0 25 ErrorCode = -19;
28 end
27
28 % Check the walidity of the endIdx

14] if ~isNodeValid(endIdx)

0 30 ErrorCode = -29;
3 end

Note that the coverage gap for these code lines and the traceability gap for requirements 2.2.1, 2.2.2,
and 2.2.3 refer to the same error codes. You can close the coverage and traceability gaps
simultaneously by authoring tests for these lines of code and creating links to the requirements.

Improve Coverage by Authoring New Tests

Create tests that improve the coverage for the tests and verify requirements 2.2.1, 2.2.2, and 2.2.2.
Open the graph_unit tests test file.

open("graph unit tests.m");

These functions test the three error codes. Copy and paste the code in line 4, in the test methods
section of the graph_unit tests file, then save the file.

1-30

Verify a MATLAB Algorithm by Using Requirements-Based Tests

function check invalid nonsquare(testCase)
adjMatrix = zeros(2,3);
startldx = 1;
endIdx = 1;
expOut = -9;
verify path length(testCase, adjMatrix, startIdx, endIdx, expOut,
'Graph is not square');
end

function check invalid entry(testCase)
adjMatrix = 2*ones(4,4);
startldx = 1;
endIdx = 1;
expOut = -9;
verify path_length(testCase, adjMatrix, startIdx, endIdx, expOut,
'Adjacency matrix is not valid');
end

function check invalid noninteger startnode(testCase)
adjMatrix = zeros(4,4);
startIdx = 1.2;
endIdx = 1;
expOut = -19;
verify path_length(testCase, adjMatrix, startIdx, endIdx, expOut,
'Start node is not an integer');
end

function check invalid noninteger endnode(testCase)
adjMatrix = zeros(4,4);
startIdx = 1;
endIdx = 2.2;
expOut = -29;
verify path _length(testCase, adjMatrix, startIdx, endIdx, expOut,
'End node is not an integer');
end

Rerun the tests with coverage and open the coverage report.

RunTestsWithCoverage

Running graph _unit tests

Code coverage report has been saved to:
C:\Users\jdoe\MATLAB\Projects\examples\ShortestPath\coverageReport\index.html

The tests now cover the error code statements.

1-31

1 Getting Started with Requirements Toolbox

1-32

[Rx]

o N
[=e]

[Ex]

oo

Lo
[Se =)

[¥%)

% Check the walidity of the adjacency matrix
if (~isRAdjMatrixvValid (adjMatrix))
ErrorCode = -9;

aend

% Check the walidity of the startIdx
if ~isNodeValid(startIdx)
ErrorCode = -1%9;

[T PRI AT o BN I

end

=l &y un

% Check the walidity of the endIdx
if ~isNodeValid(endIdx)
ErrorCode = -259;

(XTI o I i B A T L T L N T o I S O o I o I L

= wp oo

However, there is a statement on line 97 that the tests do not cover. The conditions that require the
tests to cover the statement on line 97 also cause the return on line 87 to execute, which means that
the statement on 97 is not reachable and is dead logic.

B4 % Stop iterating when the current distance is maximum because
8BS % this indicates no remaining nodes are reachable

2e if (min=—max)

a7 return;

=] end

85

S0 % Mark the current node visited and check if this is end index
91 visited(nodeldx) = true;

sz if nedeldx = endIdx

593 pathLength = distance (nodeldx) ;

54

S5 if (pathLength=—realmax)

96 % No path exists =o set distance to -1;

57 pathLength = =17

98 end

S5 return;

100 end

Fix Requirement Traceability Gaps

Regenerate the traceability matrix, apply the same filters from before, then click Highlight Missing
Links in the toolstrip.

slreq.generateTraceabilityMatrix(mtxOpts)

* Top > Link > Missing Links
* Top > Type > Functional

* Left > Type > Function

* Left > Attributes > Test

Create links between the error code requirements and the new tests.

Verify a MATLAB Algorithm by Using Requirements-Based Tests

E Returns -9 for imvalid
El Returns -19 if the sta
El Returns -29 if end nor

[= E e xeaphiional conations

Bl shortest path func regs
=] E Functional behavior

El & Class: graph_unit_fests

= El Methods{Test)

= check_invalid_nonsquare S

=l check_invalid_entry ES

= check_invalid_noninteger_ 4

= check_invalid_noninteger_ e

Update the verification status in the Requirements Editor by re-running the tests linked to both
requirement sets.

status4 = runTests(funcReqs);

Running graph unit tests

status5 = runTests(testReqs);

Running graph unit tests

All requirements have links to tests and all tests pass.

1-33

1 Getting Started with Requirements Toolbox

M Requirements Editor

REQUIREMENTS

|U_r1'|_p 'E ESave A

é2 Q@ B & W

s
Add

4 Import . . .
New Open = F Add Search | Traceability Traceability Model Testing | Export
Regquirement Set Requirement + H Matrix Diagram Dashboard v
FILE REQUIREMENTS LINKS /IEW EDIT ANALYSIS SHARE a
(O] Requirement: #8
Inde 1D Sum Verified ~ Properties
i _path_func_req Type: Container ™
E1 #1 Overview
Index: 22
B 2 2 Functional behavior Custom 1D: |-‘:8 |
Summary: |B<cepl:ional conditions |
B 211 #3 Returns the number of edges in shor... _
v B 22 #8 Exceptional conditions — Description [EEiETel
E 221 #3 Returns -9 for invalid adjacency matr... _ ey B 7 U . =EE EE v [ad
E 222 #10 Returns -19 if the start node is encod... _ The following exceptional cases should be processed in the order specified
where negative value error codes are returned.
B 223 #11 Returns -29 i end node is encoded i... ([RNENEEED g
B 224 #6 Returns -99 if startldx or endldx > n... _ The function should be designed so that it never throws an error and always
= . . _ returns a non-negative number to indicate a path or a negative number to
225 #7 Returns -199 if startldx or endIdx ar.. indicate some abnormal condition.
B 226 #5 Returns 0 if startldx == endldx]
B 227 #4 Returns -1 i o path from startiox to... (D
E1 #1 Overview
SEE e Caes o
B 211 #8 Test for path length 1 O | Kevwords:
E 212 #6 Test for a simple graph with no cycles _ ¥ Revision information:
E 214 #5 Test for a graph that contains cycles _ Revision: 11
E 215 #3 Test when shortest path is not unique _ Created by: ziu
B 216 24 Test for path length N where N is nu... (R Cizatedioa-ppi ZAug SUZE0009: 42
C | .o
217 #10 Test a graph which has no edges Modified on: 1 3021 15:07:54
E 218 #12 Test a graph starting from a node wit... —
¥ Custom Attributes
E 219 #13 Test a graph ending on a node with .. —
Priority: | High b
v E 22 #15 Tests for invalid conditions] v
B 221 #18 Test with invalid startldx > N) |~ uinks
B 222 #14 Test with invalid startldx <1 [-
Bl 223 #20 Test with invalid endldx > N]
B 224 #21 Test with invalid endldx < 1]
E 225 #11 Test a degenerate graph without nod... —
» Comments

Generate and Verify Code from the Algorithm

You can generate code from the shortest path algorithm by using MATLAB® Coder™.

Use

coder.typeof to define a variable-sized double array with a maximum size of 100x100, and a scalar

double to use as inputs in the generated MEX function.

mtxType = coder.typeof(ones(100,100),[],1);

scalarDblType

coder.typeof(1);

Generate a MEX function from the shortest path algorithm with the specified input types.

codegen shortest path -args {mtxType, scalarDblType, scalarDblType}

Code generation successful.

1-34

Verify a MATLAB Algorithm by Using Requirements-Based Tests

Use coder.runTest to rerun the tests from the graph_unit tests file by executing the MEX file
instead of the shortest path function.

coder.runTest("graph unit tests","shortest path")

Running graph _unit tests

Done graph_unit tests

1x18 TestResult array with properties:

Name
Passed
Failed
Incomplete
Duration
Details

Totals:
18 Passed, 0 Failed, 0 Incomplete.
0.06382 seconds testing time.

Name Passed Failed Incomplete

{'graph _unit tests/check invalid nonsquare' } true false false
{'graph_unit tests/check invalid entry' } true false false
{'graph_unit tests/check invalid noninteger startnode'} true false false
{'graph _unit tests/check invalid noninteger endnode' } true false false
{'graph _unit tests/check invalid start 1' } true false false
{'graph _unit tests/check invalid start 2' } true false false
{'graph_unit tests/check invalid end 1' } true false false
{'graph_unit tests/check invalid end 2' } true false false
{'graph_unit tests/check longest path' } true false false
{'graph_unit tests/check unity path' } true false false
{'graph_unit tests/check non_unique' } true false false
{'graph_unit tests/check no_path' } true false false
{'graph _unit tests/check edgeless graph' } true false false
{'graph _unit tests/check edgeless start' } true false false
{'graph_unit tests/check edgeless end' } true false false
{'graph_unit tests/check edgeless graph self loop' } true false false
{'graph _unit tests/check start _end same' } true false false
{'graph _unit tests/check invalid idx empty adj' } true false false

The tests pass when they execute the generated MEX function. The tests verify the generated code.

See Also
runTests | codegen | coder.runTest

More About

. “Review Requirements Verification Status”

. “Author Class-Based Unit Tests in MATLAB”

. “Generate Code Coverage Report in HTML Format”

1-35

	Getting Started with Requirements Toolbox
	Requirements Toolbox Product Description
	Work with Requirements in the Requirements Editor
	Author Requirements in MATLAB
	Link Blocks and Requirements

	Link Blocks and Requirements
	Work with Simulink Annotations

	Link to Test Cases from Requirements
	Requirements Definition for a Cruise Control Model
	Introduction to Requirements Toolbox
	Link Between Requirements and Implementation
	Link Between Requirements and Simulink Test
	Additional Requirements Traceability Links
	Share and Reuse Requirements

	Access Frequently Used Features and Commands from the Requirements Editor
	Access the Quick Access Toolbar
	Customize the Quick Access Toolbar
	Create and Run Favorite Commands

	Verify a MATLAB Algorithm by Using Requirements-Based Tests

